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Abstract:In this paper we propose a new five parameter bivariate distribution obtained by taking 

geometric maximum of generalized exponential distributions. Several properties of this new 

bivariate distribution and its marginals have been investigated. It is observed that the maximum 

likelihood estimators of the unknown parameters cannot be obtained in closed form. Five non-linear 

equations need to be solved simultaneously to compute the maximum likelihood estimators of the 

unknown parameters. We propose to use the EM algorithm to compute the maximum likelihood 

estimators of the unknown parameters, and it is computationally quite tractable. We performed 

extensive simulations study to see the effectiveness of the proposed algorithm, and the performance 

is quite satisfactory. We analyze one data set for illustrative purposes. Finally we propose some 

open problems. 
 

1. Introduction 

Generalized exponential (GE) distribution has received some attention in recent years in the 

statistical literature. It has been introduced by Gupta and Kundu (1999) as an alternative to 

gamma or Weibull distributions. A two-parameter GE distribution can be used quite effectively 

for analyzing lifetime data in place of two-parameter Weibull or two-parameter gamma 

distributions. It is observed that the probability density function (PDF) and the hazard function 

(HF) of a GE distribution are very similar to the corresponding PDF and HF of a gamma or a 

Weibull distribution. Since the cumulative distribution function of a GE distribution can be 

expressed in explicit form, this model can be used to analyze censored data quite conveniently. 

A brief review of GE distribution has been provided in Section 2. 

Marshall and Olkin (1997) in their classical paper introduced a method to add an extra 

parameter to a family of distributions, and discussed in details in particular the generalization of 

exponential and Weibull families. Due to presence of an extra parameter, the proposed class of 

distributions is more flexible than the exponential or Weibull class, respectively. Since then 

extensive work has been done along that line, and many researchers have investigated the same 

approach for different other distributions, see for example, Ghitany et al. (2007), Louzada et al. 

(2014), Ristic and Kundu (2015) and the references cited therein. Marshall and Olkin (1997) in 

their paper also indicated about the bivariate extension of the model. Although, the proposed 

class of distributions is a more flexible than the original class of distributions, they did not discuss 

any properties or inference related issues of the bivariate model. It seems the problem becomes 

analytically quite intractable in its general set up. Special attention may be needed for specific 

distribution. This is an attempt towards that direction. 
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The main aim of this paper is to introduce a bivariate distribution obtained by geometric 

maximum of generalized exponential distribution. In this case the method proposed by Marshall 

and Olkin (1997) may not produce the bivariate distribution in such a tractable form. In this paper, 

instead of minimization approach, as suggested by Marshall and Olkin (1997), we have taken the 

maximization approach, which produces a new class of bivariate distributions which are 

analytically quite tractable. Different properties of this new distribution have been investigated. 

Due to presence of five parameters, it is a very flexible model, and the joint PDF can take different 

shapes. Hence, it can be used quite effectively to analyze bivariate data. Moreover, it has some 

physical interpretations also. The marginals are very flexible, and we explore different properties 

of the marginals. Hazard function of the marginals can take all different shapes namely (i) 

increasing, (ii) decreasing, (iii) unimodal and (iv) bath-tub shaped. It is observed that the 

generation of random samples from the proposed bivariate model is very simple, hence 

simulation experiments can be performed quite conveniently. The proposed model has a simple 

copula structure, and we obtain different dependency properties and also computed different 

dependency measures using the copula structure. 

The proposed bivariate distribution has five parameters. The maximum likelihood estimators 

(MLEs) of the unknown parameters can be obtained by solving five non-linear equations 

simultaneously. Computationally it becomes a challenging problem. Newton-Raphson or Gauss-

Newton type algorithm iterative procedure is needed to solve these non-linear equations. 

Moreover, the choice of initial guesses and the convergence of the iterative algorithm are 

important issues. To avoid these problems, we treat this problem as a missing value problem, and 

propose to use the expectation maximization (EM) algorithm to compute the MLEs. In this case 

at each ’E’-step we need to solve two one-dimensional non-linear optimization problems. 

Therefore, the implementation of the proposed EM algorithm is very simple. Since it is a very 

flexible model and the implementation is also quite simple, it gives the practitioner a choice of 

an alternative bivariate model, which may provide a better fit than the existing models. For 

illustrative purposes, we analyze one bivariate data set using this model, and the performance is 

quite satisfactory. 

Further, we provide two generalization of the proposed bivariate model, and propose some 

open problems. It is observed that the GE distribution can be replaced by any other proportional 

reversed hazard model, and multivariate generalization is also quite straightforward. It will be 

interesting to investigate different properties and develop estimation procedures in these general 

cases. 

It may be mentioned that several other bivariate generalized exponential distributions are 

available in the literature. We briefly describe them now. Kundu and Gupta (2009) introduced 

bivariate generalized exponential distribution whose marginals are generalized exponential 

distributions. It has been obtained by using the trivariate reduction method similarly as the 

bivariate exponential distribution of Marshall and Olkin (1967). The bivariate generalized 

exponential distribution of Kundu and Gupta (2009) has four parameters, and it has a singular 

component along the line x = y. This model can be used quite effectively when there are ties in 

the data, and when the marginals have monotone hazard functions. In a subsequent paper Kundu 

and Gupta (2011) introduced absolute continuous bivariate generalized exponential distribution 
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by removing the singular components from the bivariate generalized exponential distribution of 

Kundu and Gupta (2009), similarly as the bivariate generalized exponential distribution of Block 

and Basu (1974). This model also has four parameters, and it is quite useful to analyze data when 

there are no ties. In this case also the hazard functions of the marginals are monotone. Very 

recently Mirhosseini et al. (2015) introduced a new three parameter absolute continuous bivariate 

generalized exponential distribution whose marginals follow generalized exponential 

distributions. The absolute continuous bivariate generalized exponential distribution of 

Mirhosseini et al. (2015) has been obtained using exponential distributions. It has been observed 

that it is quite close to the absolute continuous Block and Basu bivariate exponential distribution, 

and the marginal have decreasing hazard functions. The proposed bivariate generalized 

exponential distribution has five parameters, and each marginal has three parameters. Due to 

presence of five parameters, the marginals and the joint probability density functions can take 

variety of shapes. The hazard functions of the marginals can be monotone, unimodal or bath-tub 

shaped. It has an absolute continuous joint probability density function for all parameter values. 

The proposed bivariate generalized exponential distribution is more flexible than any of the 

existing bivariate generalized exponential distributions. 

Rest of the manuscript is organized as follows. In Section 2, we provide a brief review of the 

GE distribution. Bivariate geometric maximum of generalized exponential distribution and its 

properties are discussed in Section 3. In Section 4, we provide the statistical inference of the 

unknown parameters. In Section 5, we provide the results of the simulation experiments, and the 

analysis of a real data set. Finally we propose some open problems, and conclude the paper in 

Section 6. 

 

2 Generalized Exponential Distribution 

The random variable X is said to be a GE random variable with parameters α > 0 and 

λ > 0, if the cumulative distribution function (CDF) of X is 

 
and 0, otherwise. It will be denoted by GE(α, λ), and GE(α, 1) will be denoted by GE(α). If 

X ∼ GE(α, λ), the corresponding PDF and HF become 

 
and 

 
respectively. Here α is the shape parameter, and λ is the scale parameter. For α ≤ 1, the PDF 

is a decreasing function, and for α > 1 it is an unimodal function. It is clear that for α = 1, it is an 

exponential distribution function. For, α < 1, the hazard function is a decreasing function, and for 

α > 1, it is an increasing function. When α = 1, it is constant. If X ∼ GE(α), then the moment 

generating function and the moments are obtained as follows, see Gupta and Kundu (1999) 
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It is observed that the GE distribution behaves very similarly as the two-parameter gamma 

or two-parameter Weibull distributions. All the three distributions are extensions of the 

exponential distribution, but in different manners. Because of the explicit expression of the CDF, 

it can be used quite effectively to analyze censored data also. It is further observed that it is very 

difficult to discriminant between GE distribution and Weibull distribution or gamma distribution, 

particularly, if the shape parameter is very close to 1. 

The GE distribution was first introduced by Gupta and Kundu (1999), as a special case 

of a more general three-parameter exponentiated Weibull distribution, originally proposed 

by Mudholkar and Srivastava (1993), see also Mudholkar et al. (1995) in this respect. Extensive 

work has been done on GE distribution regarding different estimation and inference procedures. 

Interested reader may refer to the review articles by Gupta and Kundu (2007) or Nadarajah (2011) 

regarding different developments of this distribution. 

 

3 Bivariate Geometric (Maximum) GE Distribution 

3.1 Model Formulation 

Consider two sequences of random variables X1 , X2 , . . . and Y1 , Y2 , . . .. It is assumed 

that Xi ’s are independent and identically distributed (i.i.d.) GE(α1 , λ1 ) random variables, Yi ’s 

are GE(α2 , λ2 ) random variables, and Xi ’s and Yj ’s are independent. Let N be a geometric 

random variable with probability mass function P (N = n) = p(1 − p)n−1 ; for n ∈ N, where N 

denotes the set of all positive integers, and 0 < p < 1. From now on, it will be denoted by GM(p). 

Moreover, N is independent of Xi ’s and Yj ’s. Consider the following bivariate random variable 

(X, Y ), where 

 
We call (X, Y ) as the bivariate geometric (maximum) generalized exponential (BGGE) 

distribution, with parameters (α1 , α2 , p, λ1 , λ2 ), and it will be denoted by BGGE(α1 , α2 , p, 

λ1 , λ2 ). For notational simplicity, BGGE(α1 , α2 , p, 1, 1) will be denoted by BGGE(α1 , α2 , 

p). The following interpretations can be given for the BGGE model.  

Random Stress Model: Suppose, a system has two components. Each component is subject 

to random number of individual independent stresses, say {X1 , X2 , . . .} and {Y1 , Y2 , . . .}, 

respectively. If N is the number of stresses, then the observed stresses at the two components are 

X = max{X1 , • • • , XN } and Y = {Y1 , • • • , YN }, respectively. 

Parallel Systems: Consider two systems, say 1 and 2, each having N number of independent 

and identical components attached in parallel. Here N is a random variable. If X1 , X2 , . . . denote 

the lifetime of the components of system 1, and Y1 , Y2 , . . . denote the lifetime of the 
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components of system 2, then the lifetime of the two systems become (X, Y ), where X = 

max{X1 , . . . , XN } and Y = max{Y1 , . . . , YN }. 

The joint CDF of (X, Y ) can be obtained as 

 
The joint PDF of (X, Y ) can be obtained as fX,Y (x, y) =FX,Y (x, y), and it is 

                                                           

 
Here α1 , α2 are the shape parameters. The parameter p plays the role of the correlation 

parameter, and λ1 and λ2 are scale parameters. The joint PDF (8) is very flexible, it can take 

different shapes depending on the values of α1 , α2 and p. In Figure 1, we provide the surface 

plots of (8) for different parameter values α1 , α2 and p. It is clear that it can take variety of shapes 

depending on the parameter values. When p = 1, 

 
It may be observed that the generation from a BGGE distribution is very straight forward 

using the definition of the model. First generate N from a geometric distribution, and once N = n 

is observed, X and Y can be generated from GE(nα1 , λ1 ) and GE(nα2 , λ2 ) respectively. 

Rest of this section we discuss different properties of this distribution, hence without loss of 

generality it is assumed that λ1 = λ2 = 1. 

 

3.2 Marginal Distribution 

In this section we obtain the marginal distributions of X and Y . We provide the results for 

X, and for Y , it can be obtained along the same line. Consider the following bivariate random 

variable (X, N ), where X and N are same as defined before. The joint density function, fX,N (x, 

n), of (X, N ) is given by 

 
Therefore, the joint distribution function of (X, N ) is 
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From (11), one can obtain 

 
Note that (12) can be obtained directly from (7) also, by taking y → ∞. The PDF of X 

Becomes 

 
It is clear that the PDF of X can be written as the weighted GE distribution, with the weight 

function 

 
It is an increasing function and it increases from p to 1/p, as x varies from 0 to ∞. The PDF 

of X can take different shapes. The PDF can be a decreasing function or unimodal, it can have a 

thicker tail than the GE distribution for certain choice of the parameter values. From (12), we 

obtain that for any fixed x, as p → 0, P (X > x) → 1. Therefore, it becomes heavy tail distribution. 

It is clear that if p = 1, X has GE(α1 ). For p close to 1, the shape of PDF of X is very close to the 

shape of the PDF of GE distribution. 

This model has a close resemblance with the model recently proposed by Louzada et al. 

(2014). They proposed the model which is geometric minimum of generalized exponential 

distributions and it has the PDF 

 
for α > 0, λ > 0 and 0 < p < 1. Since GE distribution is closed under maximum, our 

model is a natural generalization of the GE model than the model proposed by Louzada et al. 

(2014). Moreover, many treatments and properties developed in this model can be developed 

along the same line for the model (15), and vice versa. For example, the EM algorithm developed 

for the model (13) can be developed along the same line for the model (15) also. 

The hazard function of X can be written as 

 
and 

 
The weight function w1 (x) is an increasing function, and it increases from p to 1, as x ranges 

from 0 to ∞. We have the following result regarding the shape of the hazard function of X. Result 
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1: The hazard function of X is an increasing function if α > 1. For 0 < α < 1, if 0 < p < 2α/(1 + 

α), then it is a U -shaped (bath-tub type) and if 2α/(1 + α) < p < 1, then it is a decreasing function. 

 

Proof: Considering the logarithm of the hazard function, the proof can be obtained. The 

details are avoided. 

If a random variable X has the CDF (12) or the PDF (13), we call it as the geometric 

maximum of GE (GGE) distribution, and it will be denoted by GGE(α1 , p). If U ∼ GGE(α, p), 

the γ-th percentile point of U is 

 
Moreover, for fixed p and x, as α increases, P (U ≤ x) increases. It implies that for fixed p, 

GGE(α, p) family has a stochastic ordering in terms of α. 

The following result will be useful in developing EM algorithm for GGE distribution. From 

(10), it follows after some calculations that  

 
and 

 
The following result indicates that GGE is closed under geometric maximum. Result 1: 

Suppose, {Ui ; i ≥ 1} is a sequence of i.i.d. GGE(α, p) random variables, and M ∼ GM(q), for 0 

< q < 1. Moreover, Ui ’s and M are independent. Consider a new random variable 

 
then V ∼ GGE(α, pq). 

Proof: 

 

 
 

The moment generating function cannot be obtained in explicit forms, it is obtained as an 

infinite series. If X ∼ GGE(α1 , p), then the moment generating function of X is 
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Different moments of X also cannot be obtained in explicit forms, they can be obtained from 

(23) as infinite series. Moreover, the PDF of X can be written as infinite mixture of GE 

distributions. 

 

3.3 BGGE: Basic Properties 

 

Result 2: If (X, Y ) ∼ BGGE(α1 , α2 , p), then 

(a) X ∼ GGE(α1 , p) and Y ∼ GGE(α2 , p). 

(b)X ≤ x|Y ≤ y ∼ GGE(α, 1 − (1 − p)(1 − e−y )β ). 

(c) max{X, Y } ∼ GGE(α1 + α2 , p). 

(d)  

(e)  

 

Proof: The proof of (a), (b) and (c) can be obtained in a routine matter. We provide the proof 

of (d) and (e) only. Proof of (d): 

 
Proof of (e): 

 
The joint density function of (X, Y, N ), fX,Y,N (x, y, n) is given by  

 
Therefore, 
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Where 

 
Now using the fact that if M ∼ GM(1 − a), then E(M 3 ) = (a2 + 4a + 1)/(1 − a)3 , we obtain 

 
The above result (26) will be useful for developing the EM algorithm. The following result 

is the bivariate extension of Result 1. It indicates that BGGE distribution is also closed under 

geometric maximum. The proof is very similar to Theorem 1, and it is avoided. 

Result 3: Suppose, {(Ui , Vi ); i ≥ 1} is a sequence of i.i.d. BGGE(α1 , α2 , p) random 

variables, and M ∼ GM(q), for 0 < q < 1. Moreover, (Ui , Vi )’s and M are independent. Consider 

a new random variable 

 
then (U, V ) ∼ BGGE(α1 , α2 , pq). 

The joint moment generating function of (X, Y ) cannot be obtained in explicit forms, as 

expected. If (X, Y ) ∼ BGGE(α1 , α2 , p), then the moment generating function of (X, Y ) is 

 
Different cross moments of X and Y also cannot be obtained in explicit forms, they can be 

obtained from (28) as infinite series. 

3.4 BGGE: Dependence Properties 

It is known, Nelsen (2006), that every bivariate distribution function, FX,Y (•, •) with 

continuous marginals FX (•) and FY (•), corresponds a unique function C : [0, 1]2 → [0, 1], called 

a copula such that 

 
 

Conversely, the copula C(u, v) can be recovered from the joint distribution function FX,Y 

(•, •) as follows; 

 
It can be shown by some calculation that if (X, Y ) ∼ BGGE(α1 , α2 , p), then the 

corresponding copulas Cp (u, v) becomes 
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The copula (31) is known as the Ali-Mikhail-Haq copula, see Ali, Mikhail and Haq (1978). 

The authors provided some nice interpretation of the above copula in terms of bivariate odds ratio.  

Let us recall the following definitions, see for Nelsen (2006). Suppose X and Y are random 

variables with absolute continuous joint distribution function. 

Definition 1: X is stochastically increasing in Y if P (X > x|Y = y) is a non-decreasing 

function of y for all x. 

Definition 2: X and Y are positively quadrant dependent (PQD) if for all (x, y) ∈ R2 

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y). 

Definition 3: X is left tail decreasing in Y , denoted by LTD(X|Y ), if P (X ≤ x|Y ≤ y), 

is a non-increasing function of y for all x. 

Definition 4: A function f : R2 → R is said to be a total positivity of order two (TP2 ), if f (x, 

y) ≥ 0 for all (x, y) ∈ R2 , and whenever x ≤ x’, and y ≤ y’ , 

 
The random variables (X, Y ) is said to be TP2 , if the joint cumulative distribution function 

of (X, Y ) is TP2 . 

We can establish the following properties using the above copula structure. Result 4: If (X, 

Y ) ∼ BGGE(α1 , α2 , p), then X is stochastically increasing in Y and vice versa. 

Proof: Using the copula function, it follows that Y is stochastically increasing in X, if and 

only if for any v ∈ [0, 1], C(u, v) is a concave function of u, see Nelsen (2006). In case of Ali-

Mikhail-Haq copula, note that 

 
therefore, the result follows. 

Result 5: If (X, Y ) ∼ BGGE(α1 , α2 , p), then X and Y are PQD. 

Proof: It is known that PQD is a copula property, and two random variables X and Y are 

PQD if and only if, the corresponding copula, C(u, v), satisfies 

 
In case of Ali-Mikhail-Haq copula, it can be easily seen that it satisfies (33), and the result 

immediately follows. 

Result 6: If (X, Y ) ∼ BGGE(α1 , α2 , p), then X is left tail decreasing in Y and vice versa. 

Proof: Since ‘left tail decreasing’ property is a copula property, and X is left tail decreasing 

in Y if and only if for any u ∈ [0, 1], C(u, v)/v is non-increasing in v. In case of Ali-MikhailHaq 

copula, it is true, and the result follows. 

Result 7: If (X, Y ) ∼ BGGE(α1 , α2 , p), then (X, Y ) has TP2 property. 

Proof: The joint CDF of (X, Y ) is TP2 if and only if Ali-Mikhail-Haq copula is TP2 , as TP2 

property is also a copula property. For u < u′ and v < v ′ it can be seen after some calculation that 
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Hence, the result follows. 

4. Statistical Inference 

4.1 BGGE: EM Algorithm 

Let us assume that we have a random sample {(x1 , y1 ), . . . , (xm , ym )} from BGGE(α1 , 

α2 , p, λ1 , λ2 ), i.e. it has the PDF (8). The log-likelihood function based on the observation 

becomes; 

 
Now to compute the MLEs of the unknown parameters, we need to maximize (35) with 

respect to the unknown parameters. It is clear that we need to solve five dimensional optimization 

problem to compute the MLEs of the unknown parameters. We need to use some iterative 

algorithm like Newton-Raphson or Gauss-Newton, to solve these non-linear equations. Finding 

initial guesses for solving five dimensional non-linear equations is not a trivial issue. To avoid 

that we propose to use this problem as a missing value problem, and use the EM algorithm to 

compute the MLEs. 

First it is assumed that p is known. In developing the EM algorithm, we treat this as a missing 

value problem. It is assumed that the complete observation is as follows: {(x1 , y1 , n1 ), . . . , 

(xm , ym , nm )}. Here ni is missing corresponds to (xi , yi ), and it is obtained from N ∼ GM(p). 

Based on the complete observation, the complete log-likelihood function without the additive 

constant (involving only the unknown parameters) becomes; 

 
Now based on the complete observations, the MLEs of the unknown parameters can be 

obtained as follows: For given λ1 and λ2 , the MLEs of α1 and α2 can be obtained as 
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respectively. The MLEs of λ1 and λ2 can be obtained by maximizing 

 
and 

 
with respect to λ1 and λ2 , respectively. It can be shown, see Gupta and Kundu (2002) for 

details, that under certain restrictions, h1 (λ) and h2 (λ) are unimodal functions, hence they have 

unique maximum. Although, because of the complicated nature of the log-likelihood function, 

general results cannot be established. Empirically it has been observed that they have unique 

maximum in all the cases considered. Finally the MLE of p can be obtained by maximizing the 

profile log-likelihood function with respect to p. 

Now we are in a position to develop EM algorithm, and it can be developed as follows. At 

the k-stage, suppose the values of α1 , α2 , λ1 and λ2 are  , respectively, then at 

the k + 1-stage, ‘E’-step involves forming the pseudo loglikelihood function without the additive 

constant becomes 

 
Where 

 
Therefore, ’M’-step involves maximizing (40) with respect to the unknown parameters to 

obtain  , and they can be obtained as follows:  can be obtained by 

maximizing 

 
with respect to λ1 , where 

 

Similarly, can be obtained by maximizing 
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with respect to λ2 , where 

 

and obtain  as 

 
Continue the process until convergence takes place. For fixed p, we denote these MLEs of 

α1 , α2 , λ1 and λ2 , as α1 (p), α2 (p), λ1 (p) and λ2 (p), respectively. Finally the MLE of p, can 

be obtained by maximizing the profile log-likelihood function l(α1 (p), α2 (p), λ1 (p), λ2 (p), p) 

with respect to p. 

4.2 Testing of Hypotheses 

It has already been mentioned that when p = 1, the two marginals are independent. Therefore, 

one of the natural tests of hypotheses problem will be to test the following: 

 
In this case the since p is in the boundary under the null hypothesis, the standard the results 

do not work. Using Theorem 3 of Self and Liang (1987), it follows that 

 
Here α1 , α2 , λ1 , λ2 , p are the MLEs of the corresponding parameters without any restriction, 

and (α1 , α2 , λ1 , λ2 ) are the MLEs under the restriction p = 1. 

5 Numerical Experiments and Data Analysis 

5.1 Numerical Experiments 

In this section we present some simulation results to show how the proposed EM algorithm 

performs for different sample sizes and for different parameter values. We have taken the 

following sets of parameter values 

 
We fit the BGGE model to the simulated data set, and to compute the MLEs of the unknown 

parameters we use the EM algorithm as suggested in the previous section. For each p, we compute 

α1 (p), α2 (p),λ1 (p),λ2 (p), using EM algorithm. In each case we started the EM algorithm with 

α1 = α2 = λ1 = λ2 = 0.5, and the iteration stops when the absolute value of the difference of the 

two consecutive iterates for all the four parameters are less than 10−5 . We replicate the process 

1000 times, and report the average estimates and the associated mean squared errors (MSEs) 
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within brackets below. We also report the median number of iterations (MNI) needed for the EM 

algorithm to converge. All the results are reported in Tables 1 – 1 

 
Some of the points are quite clear from the simulation results. First of all, it is observed in all 

cases that as the sample size increases, the biases and the mean squares errors decrease. It verifies 

the consistency properties of the MLEs. In all the cases the EM algorithm converges 

 
with 12 iterations. It indicates that the proposed EM algorithm is working well in this case. 

Now we would like to compare the performances of the MLEs for different sets of parameter 

values based on the biases and MSEs. Comparing Table 1 and Table 2 it is clear that if the shape 

parameters change, the performance of the MLEs of the scale (λ1 and λ2 ) and the correlation (p) 

parameters do not change. Comparing 1, Table 3 and 4 it is observed that if the correlation 

parameter changes the performances of the MLEs of the scale parameters do not change. In case 

of the shape parameters, the performance becomes better as p increases. We have used the EM 

algorithm with some other initial values also. In all these cases the results remain the same, except 

the MNI changes. Based on the simulation results, we can conclude that the proposed EM 

algorithm is working quite well, and it can be used quite effectively for data analysis purposes. 
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5.2 Real Data Set 

In this section we analyze one real data set using the BGGE model. This data set represents 

the two different measurements of stiffness, ‘Shock’ and ‘Vibration’ of each of 30 boards. 

 
The first measurement (Shock) involves sending a shock wave down the board and the 

second measurement (Vibration) is determined while vibrating the board. The data set was 

originally from William Galligan, and it has been reported in Johnson and Wichern (1992), and 

for convenience it is presented in Table 5. Before progressing further, first we plot the scaled-

TTT plots, see Aarset (1987) for details, of the marginals in Figure 2. Since both are concave 

functions, it can be assumed that the hazard function of the marginals are increasing functions. 

Therefore, BGGE may be used for analyzing this data set. We have used EM algorithm to 

compute the MLEs of the unknown parameters. It is observed that the initial guesses of the 

unknown parameters do not create any problem in this case regarding the convergence of the EM 

algorithm. We have used the same convergence criterion as it has been used in the previous 

example. We have verified with different starting values, but it provides the same estimates in all 

cases. The MLEs of the unknown parameters are 
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and the corresponding log-likelihood value is -25.2273. The 95% bootstrap confidence 

intervals of α1 , α2 , λ1 , λ2 and p are (6.3134,10.5751), (2.8716,4.3118), (4.5743,7.1259), 

(4.6217,7.1211), (0.0103,0.0325), respectively. To check whether two independent GE 

distributions can be used to analyze the bivariate data set, we test the hypothesis (47). Under H0 , 

the MLEs of α1 , α2 , λ1 and λ2 become 14.9564, 8.4966, 3.6301, 3.6701, respectively, and the 

corresponding log-likelihood value is -37.6374. The value of the Self and Liang (1987) test 

statistic (48) is 24.8202 and the associated p < 0.0001. Hence, two independent GE distributions 

cannot be used to analyze this data set. 

Recently, four-parameter bivariate Pareto distribution has been used to analyze this stiffness 

data set by Sankaran and Kundu (2014). It is observed that bivariate Pareto provides a good fit to 

this data set. The MLEs of the four parameters, α0 , α1 , α2 and θ, see Sankaran and Kundu (2014) 

for details, are 0.0154, 0.0321, 0.0292 and 18.3488, respectively. The associated log-likelihood 

value is -96.5098. Now comparing five-parameter BGGE model and four-parameter bivariate 

Pareto model, based on both AIC or BIC we prefer to choose BGGE compared to bivariate Pareto 

model in this case. 
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6 Conclusions 

In this section we propose a new absolute continuous bivariate distribution by taking the 

geometric maximum of generalized exponential distributions. Several properties of this new 

bivariate distribution have been established. It is further observed that the proposed distribution 

can be obtained from a well known Ali-Mikhail-Haq copula, hence several properties can be 

obtained using the copula properties. We have suggested to use the EM algorithm to compute the 

MLEs of the unknown parameters, and it is observed that the proposed EM algorithm works quite 

well in practice. Along the same line EM algorithm for GGE model and also the model recently 

proposed by Louzada (2014), also can be obtained. 

Now we provide some open problems. Suppose F0(·) is a distribution function with 

support on the positive real axis, then the following class of distribution functions; 

 
for α > 0 is known as the proportional reversed hazard class. Now along the same line 

bivariate geometric maximum of proportional reversed hazard distribution can be obtained.  

Further, multivariate geometric maximum of proportional reversed models also can be obtained 

along the same line. It will be interesting to obtain different properties of this new class of 

distributions. More work is needed along these directions. 
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